Asymmetric Total Synthesis of (+)-Apovincamine and a Formal Synthesis of (+)-Vincamine. Demonstration of a Practical "Asymmetric Linkage" between Aromatic Carboxylic Acids and Chiral Acyclic Substrates

Arthur G. Schultz,* William P. Malachowski, and You Pan
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

Received August 19, 1996^{*}

Abstract

Asymmetric syntheses of (+)-apovincamine (1a) and (+)-vincamine (2) are described. Construction of the pentacydic diene lactam 14, a pivotal intermediate for synthesis of the cis-fused vincanetype alkaloids, began by Birch reduction-alkylation of the chiral benzamide $\mathbf{3}$ to give the 6 -ethyl-1-methoxy-4-methyl-1,4-cycl ohexadiene 4. Conversion of $\mathbf{4}$ to 2,5 -cycl ohexadienone $\mathbf{5}$ (92% overall yield from $\mathbf{3}$) and HPLC analysis of $\mathbf{5}$ demonstrated the diastereomeric purity resulting from the Birch reduction-alkylation to be >100:1. Dienone $\mathbf{5}$ was converted to butyrolactone $\mathbf{9}$ (47% overall yield from 3), and 9 was coupled with tryptamine (10) to give the amide 11a. Amido keto aldehyde 13 was obtained from 11a, and acid-catalyzed tricyclization and subsequent baseinduced elimination of MeOH provided the desired cis-fused pentacyclic diene lactam 14. Examination of the two-step process $\mathbf{1 3} \rightarrow \mathbf{1 4}$ revealed a novel base-induced epimerization at $C(21)$ which served to interconvert 14 and 17, possibly by the involvement of a homoenolate. Diene lactam 14 was converted to (+)-apovincaminal 20a, an intermediate in the synthesis of $(+)$-apovincamine (la) reported by Winterfeldt and co-workers. A new procedure for conversion of 20a to la involves conversion of $\mathbf{2 0 a}$ to the acetal $\mathbf{2 0 b}$ and treatment of $\mathbf{2 0 b}$ with NBS/AIBN in CCI 4 . The conversion of $\mathbf{l a}$ to vincamine ($\mathbf{2}$) has been reported by Oppolzer and co-workers.

The eburnamine-vincamine alkaloids are found in plants of the dogbane family (Apocynaceae). ${ }^{1}$ Herein, we report asymmetric total syntheses of two of the most important vincane-type alkaloids, (+)-apovincamine (la)

1a, $R=M e(+)$-apovincamine
b, $R=E t$

2, (+)-vincamine
and (+)-vincamine ($\mathbf{(2)}$. Ethyl apovincaminate ($\mathbf{(b)}$) has been used for the treatment of cognitive and behavioral symptoms associated with vascular and degenerative disorders of the central nervous system ${ }^{2}$ and has been reported to have beneficial effects in the treatment of cerebral ischemia. ${ }^{3}$ Vincamine (2) is a vasodilator; it is noteworthy that Sankyo introduced brovincamine fumarate (trade name: Sabromin) in 1986 as a drug to selectively increase cranial and coronary blood flow for the treatment of multiinfarct dementia. ${ }^{4}$

Several strategies for asymmetric syntheses of the eburnamine-vincamine alkaloids (excluding resolutions) are highlighted in Scheme 1. The Rapoport ${ }^{5}$ and Takano ${ }^{6}$ groups have made direct use of the chiral pool; other

[^0]Scheme 1. The Preparation of Key Intermediates in Several Asymmetric Syntheses of the E burnamine-Vincamine Alkaloids

research groups have utilized the chiral auxiliary approach with modest to good absolute stereocontrol. ${ }^{7}$ Absolute stereocontrol in our synthesis of la has been accomplished by the Birch reduction-alkylation of the chiral benzamide $\mathbf{3}$ to give $\mathbf{4}$ with a diastereomer distribution of $>100: 1 .^{8}$

Results and Discussion

It was expected that a wide range of vincane-type alkaloids would be accessible by chemical modification of the pentacyclic diene Iactam 14. The strategy for construction of 14 involved coupling of tryptamine (10) with the chiral enantiomerically pure butyrolactone 9 , followed by acid-catalyzed tricyclization and elimination of MeOH from the amido keto aldehyde 13. Butyrolactone 9 was obtained from the chiral benzamide $\mathbf{3}$ by a new process ${ }^{9 a}$ that provides a practical "asymmetric linkage" between aromatic carboxylic acids and chiral acyclic substrates. ${ }^{9 b}$

Construction of Butyrolactone 9. A concise and efficient preparation of butyrolactone 9 from chiral benzamide 3^{10} is shown in Scheme 2. Birch reductionethylation of 3 (32.5 g scale) provided the 1,4-cyclohexadiene 4, which was converted to the 2,5-cyclohexadienone 5 on oxidation with catalytic PDC and t-BuOOH in benzene in the presence of Celite. ${ }^{11}$ The overall yield for this two-step conversion was 92\%. Diastereomeric purity of 5 was determined to be >100:1 by direct HPLC comparison to a 1:1 mixture of diastereomers prepared by reductive alkylation of methyl 2-methoxy-5-methylbenzoate with ethyl iodide, saponification, coupling of the resulting cydohexadienecarboxylic adid to L-prolinol (methyl ether), ${ }^{12}$ and oxidation to the dienone.

Hydrogenation of the $\mathrm{C}(5)-\mathrm{C}(6)$ double bond in 5 with $5 \% \mathrm{Pd} / \mathrm{C}$ gave the crystalline vinylogous ester 6 in 90\% yield as a single diastereomer. The $C(2)-C(3)$ double bond in 6 was resistant to further hydrogenation; ${ }^{13}$ efficient conversion of $\mathbf{6}$ to the 3-methoxycycl ohexanone 7 required reduction with Li in NH_{3} in the presence of tert-BuOH. Baeyer-Villiger oxidation of 7 gave the caprolactone derivative 8, for which an X-ray structure

[^1]

4

a Reaction conditions: (a) $\mathrm{K}, \mathrm{NH}_{3}$, tert-BuOH (1 equiv) $-78^{\circ} \mathrm{C}$; piperylene; Etl (1.1 equiv), $-78{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; (b) PDC (cat.), tertBuOOH, Celite, PhH ; (c) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$ (60 psi); (d) $\mathrm{Li}, \mathrm{NH}_{3}$, tert-BuOH, $-78{ }^{\circ} \mathrm{C}$; $\mathrm{NH}_{4} \mathrm{Cl},-78{ }^{\circ} \mathrm{C}$; (e) TFAA, UHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}$; (f) TsOH, $\mathrm{H}_{2} \mathrm{O}, \mathrm{PhH}$, reflux.

Scheme 3^{3}

${ }^{\text {a }}$ Reaction conditions: (a) $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}, \mathrm{DMF}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; (b) (tert- $\left.\mathrm{BuO}_{2} \mathrm{C}\right)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{LiBH}_{4}, \mathrm{THF}$; (d) ClCOCOCl , DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}$; (e) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (f) tert-BuOK, tert-BuOH, reflux
determination provided the absolute configurational assignments at $C(4), C(5)$, and $C(7) .{ }^{14}$ Treatment of 8 with p-toluenesulfonic acid in a refluxing mixture of $\mathrm{PhH}-$ $\mathrm{H}_{2} \mathrm{O}$ gave the butyrolactone carboxylic acid 9 and released the chiral auxiliary for reutilization. It is noteworthy that 9 was prepared from $\mathbf{3}$ in six steps with an overall yield of 47%.

Conversion of 9 to the Pentacyclic Diene Lactam 14. Butyrolactone 9 was coupled to tryptamine (10) as shown in Scheme 3 to give the chiral amide 11a (83\%). It was necessary to protect the indole NH group as the tert-butoxycarbonyl derivative 11b because an unprotected intermediate (not shown) underwent oxidative cyclization at $\mathrm{C}(2)$ of the indole ring and the neighboring

[^2]secondary amide during a subsequent Swern oxidation. Reduction of the lactone ring in $\mathbf{1 1 b}$ with LiBH_{4} in THF provided the diol 12, which was converted to the amido keto aldehyde 13 on Swern oxidation (68% overall yield from 11a). Treatment of 13 with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ effected the desired tricyclization, and subsequent baseinduced elimination of MeOH provided the cis-fused diene lactam 14 as the major reaction product (see Experimental Section).

Careful examination of the two-step process $\mathbf{1 3} \rightarrow \mathbf{1 4}$ revealed several remarkable features that make this solution to the stereocontrolled construction of the cisfused vincane-type alkaloids unique. Separation of reaction products from the acid-catalyzed cyclization of 13 provided cis-fused 15 (47\%) and trans-fused 16 (30\%).

Treatment of $\mathbf{1 5}$ with tert-BuOK in tert-BuOH at reflux gave the crystalline cis-fused diene lactam 14 in 60\% isolated yield and 12% of the trans-fused diene lactam 17. To our initial surprise, trans-fused $\mathbf{1 6}$ also provided the cis-fused diene lactam 14 (52\% isolated yield) under conditions identical to those utilized for the conversion of $\mathbf{1 5}$ to $\mathbf{1 4}$. It was demonstrated in a separate experiment with $\mathbf{1 7}$ and tert-BuOK in tert-BuOH at reflux that epimerization at $\mathrm{C}(21)$ occurred to give a $4: 1$ mixture of 14 and 17.

Deuterium labeling experiments were carried out to help elucidate the mechanism of isomerization at $C(21)$. In both the cis- and trans-fused pentacyclic lactams 15 and 16 the protons at $C(14)$ readily exchanged (see Experimental Section for details). With 15, this resulted in the elimination of MeOH and formation of $\mathbf{1 4}$ without any deuterium incorporation at $\mathrm{C}(21)$. With 16, elimination of MeOH to generate 17 was accompanied by exchange of the proton at $\mathrm{C}(21)$ and epimerization. Interconversion of $\mathbf{1 5}$ and $\mathbf{1 6}$ did not occur under the strongly basic conditions leading to elimination of MeOH from 15 and 16. Therefore, the α, β-unsaturated lactam is a structural unit that is required for conversion of trans-fused 17 into cis-fused 14. It is possible that interconversion of $\mathbf{1 4}$ and $\mathbf{1 7}$ is facilitated by the involvement of a homoenolate ${ }^{15}$ as shown in Figure 1.

Completion of the Synthesis of (+)-Apovincamine (1a) and a Formal Total Synthesis of (+)-Vincamine (2). Reduction of the diene lactam 14 by the method of Shamma and Rosenstock ${ }^{16}$ gave the piperidine 18 (Scheme 4). Electrophilic bromination of the enamine-like double bond in 18 with 2 equiv of N -bromoacetamide provided the dibromide 19 in 67\% overall yield from 14. Treatment of 19 with $\mathrm{AgBF}_{4}, \mathrm{DMSO}$, and $E t_{3} \mathrm{~N}$ followed by an aqueous workup procedure gave (+)-apovincaminal 20a in 83\% yield.
(15) Nickon, A.; Lambert, J . L. J. Am. Chem. Soc. 1966, 88, 1905. (16) Shamma, M.; Rosenstock, P. O. J. Org. Chem. 1961, 26, 718.

Figure 1. Energy-minimized (MM2 via MacroM odel Version 3.0) of a homoenolate possibly involved with the interconversion of $\mathbf{1 4}$ and 17.

a Reaction conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux; (b) $\mathrm{CH}_{3} \mathrm{CONHBr}$
(2 equiv), THF; (c) $\mathrm{AgBF}_{4}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$; (d) $\mathrm{MeOH},(\mathrm{MeO})_{3} \mathrm{CH}$, TsOH, reflux; (e) AIBN, NBS, CCl_{4}, reflux.

The conversion of 20a to (+)-apovincamine (1a) has been reported by Winterfeldt and co-workers. ${ }^{7 c}$ Aldehyde 20a was reduced to apovincaminol 20c, and a sample of this material sent to Hannover was found to be identical to apovincaminol in two TLC systems and by direct ${ }^{1} \mathrm{H}$ NMR comparison. Although the preparation of 20a constitutes a formal total synthesis ${ }^{17}$ of 1a, we opted to develop a procedure for conversion of 20a to (+)-apovincamine (1a) which avoids the use of metallic oxidants. Treatment of 20 a with $\mathrm{MeOH},(\mathrm{MeO})_{3} \mathrm{CH}$, and p-toluenesulfonic acid gave the acetal 20b and free radical bromination ${ }^{18}$ of 20b provided (+)-1a. This substance was found to be identical (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, TLC, IR) to $(+)$-apovincamine that had been prepared from natural vincamine by literature procedures. ${ }^{19}$ The conversion of apovincamine to vincamine (2) has been reported by Oppolzer and co-workers. ${ }^{20}$

To confirm that the high diastereoselectivity obtained by Birch reduction-alkylation of $\mathbf{3}$ to give $\mathbf{4}$ was main-
(17) Najer, H.; Pascal, Y. German Patent P 236568.3,9 1973; also, see ref 7 c .
(18) Markó, E.; Mekhalfia, A.; Ollis, D. Synlett 1990, 347.
(19) (a) Trojánek, J.; Strouf, O.; Holubek, J.; Cekan, Z. Tetrahedron Lett. 1961, 702. (b) Mokry, J.; K ompis, I. Tetrahedron Lett. 1963, 1917. (c) Pfäfli, P.; Hauth, H. Helv. Chim. Acta 1978, 61, 1682.
(20) Pfäffli, P.; Oppolzer, W.; Wenger, R.; Hauth, H. Hedv. Chim. Acta 1975, 58, 1131.
tained during subsequent synthetic conversions, (+)apovincaminol (20c) was converted to the Mosher ester. This derivative was compared to a diastereomeric mixture of the corresponding Mosher ester of racemic apovincaminol obtained by Birch reduction-alkylation of the achiral pyrrolidine amide analogue of 3. ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated that the Mosher ester of (+)-20c was a single diastereomer; however, ${ }^{19} \mathrm{~F}$ NMR spectroscopy revealed a small but reproducible resonance at the chemical shift corresponding to the second diastereomer, establishing the minimum enantiomeric composition to be $>20: 1$. It can be concluded, therefore, that the process resulting in epimerization at $\mathrm{C}(21)$ during the conversion of $\mathbf{1 6}$ to $\mathbf{1 4}$ does not compromise the absol ute configuration at $\mathrm{C}(20)$ to any significant degree.

Conclusion

This highly stereoselective synthesis of (+)-apovincamine (1a) was carried out in 17 steps from chiral benzamide 3. Important general features of this synthesis are excellent control of absolute configuration at three stereogenic centers during the conversion of $\mathbf{3}$ to cyclohexanone 7; complete regioselectivity for the BaeyerVilliger oxidation of 7; the efficient release of the chiral auxiliary by an acid-catalyzed transesterification to give butyrolactone 9; effective stereocontrol for the sequence of reactions to convert $\mathbf{1 3}$ to the diene lactam 14. It is expected that the pentacyclic diene lactam 14 also will serve as an intermediate for synthesis of the 14,15dehydrovincane type alkaloids ${ }^{1}$ and related analogues.

Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopies were performed at 500 and 125 MHz , respectively, with chloroform used as the internal standard. ${ }^{19}$ F NMR spectroscopy was performed at 470 MHz and trifluoroacetic acid ($\delta=0.0$) was used as an external reference. High resolution mass spectra were obtained from the University of Illinois facilities at Urbana-Champaign. Thin-layer chromatography was performed with Merck Kieselgel 60 F-254 and Whatman Linear-K silica gel precoated glass plates. Melting points are reported without correction. Elemental analyses were obtained from Quantitative Technologies Inc., Whitehouse, N.J. HPLC analyses were performed on a Waters (6000A) chromatograph fitted with a Chiracel OJ (Daicel) col umn and a refractometer detection system (R40). Peak areas were measured with a Hewlett-Packard integrator (HP 3394). Methyl alcohol, tertbutyl alcohol, dimethyl sulfoxide, and triethylamine were dried over CaH_{2} and distilled. Tetrahydrofuran and diethyl ether were dried over sodium/benzophenone ketyl and distilled. Methylene chloride and carbon tetrachloride were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled. Dimethylformamide and trimethyl orthoformate were dried over 4 Å molecular sieves and distilled.

N -Bromoacetamide was recrystallized from methylene chloride. Tryptamine was recrystal lized from toluene. N-Bromosuccinimide was recrystallized from $\mathrm{H}_{2} \mathrm{O}$. All other reagents were used as purchased. Reactions requiring anhydrous conditions were performed under a nitrogen atmosphere.
($\mathbf{2}^{\prime} \mathrm{S}, 6 \mathrm{R}$)-6-E thyl-1-methoxy-4-methyl-6-[[2'-(methoxy-methyl)pyrrolidinyl]carbonyl]-1,4-cyclohexadiene (4). To a solution of benzamide $3^{10}(32.5 \mathrm{~g}, 123 \mathrm{mmol})$ and tertbutyl alcohol ($11.6 \mathrm{~mL}, 123 \mathrm{mmol}$) in THF (300 mL) and NH_{3} (1200 mL) at $-78^{\circ} \mathrm{C}$ was added potassium in small pieces until a blue coloration was maintained for 30 min . Piperylene was added to consume the excess metal, and then Etl (11.1 mL , 136 mmol) was added over 10 min . The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and then slowly warmed to room temperature to allow the NH_{3} to evaporate. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give 4, 36.8
g, (100\%) as a light yellow oil which was used in the next reaction. Chromatography (silica gel, 30\% EtOAc in hexane) gave 4 as a white solid (mp $34-39{ }^{\circ} \mathrm{C}$). $\mathrm{R}_{\mathrm{f}}=0.54$ (EtOAc: hexane 1:1) UV inactive. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.0(1 \mathrm{H}, \mathrm{s}), 4.75$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10 \mathrm{~Hz}, 4$ $\mathrm{Hz}), 3.50(1 \mathrm{H}, \mathrm{m}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.29-3.26(2 \mathrm{H}$, m), $2.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=20 \mathrm{~Hz}), 2.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=19 \mathrm{~Hz}), 2.05(2$ $\mathrm{H}, \mathrm{m}), 1.84-1.75(2 \mathrm{H}, \mathrm{m}), 1.74(3 \mathrm{H}, \mathrm{s}), 1.73-1.66(2 \mathrm{H}, \mathrm{m})$, $0.66(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 171.0,152.6,133.4$, 121.2, 92.8, 71.8, 58.6, 57.8, 54.0, 53.0, 45.6, 31.4, 28.6, 26.1, 24.7, 22.0, 13.9, 7.7. CI-MS, m/z (relative intensity) 294 (${ }^{+}$ $+1,100 \%$).
(2'S,4R)-4-Ethyl-3-methoxy-6-methyl-4-[[2'-(methoxy-methyl)pyrrolidinyl]carbonyl]-2,5-cyclohexadien-1one (5). To a solution of $4(19.9 \mathrm{~g}, 67.9 \mathrm{mmol})$ in benzene $(600 \mathrm{~mL})$ were added PDC ($2.5 \mathrm{~g}, 6.8 \mathrm{mmol}$), Celite (2.5 g), and $\mathrm{t}-\mathrm{BuOOH}(10 \mathrm{~mL}, 102 \mathrm{mmol})$. The mixture was stirred for 7 h at room temperature, and then another portion of PDC $(2.5 \mathrm{~g})$, Celite (2.5 g), and t-BuOOH (10 mL) was added. After stirring overnight, the mixture was filtered and the solution was evaporated under reduced pressure. Column chromatography (silica gel, 60\% EtOAc in hexane) gave 5, 19.28 g (92\%), as a light yellow solid (mp 90-96 ${ }^{\circ} \mathrm{C}$). $\mathrm{R}_{\mathrm{f}}=0.25$ (EtOAc: hexane 1:1) UV active. HPLC analysis of diastereomers (9:1 hexanes:i-PrOH): retention times $=8.20$ (major diastereomer) and 9.76 min (minor); ratio of integrated peak areas exceeded 100:1. An analysis of a mixture of the diastereomers prepared as described in the text had an integration ratio of 1:1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.13(1 \mathrm{H}, \mathrm{s}), 5.66(1 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.62(3 \mathrm{H}, \mathrm{s}), 3.40(1 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{m}), 3.20(3 \mathrm{H}, \mathrm{s}), 3.07(1$ $\mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{m}), 2.14-2.10(1 \mathrm{H}, \mathrm{m}), 1.97-1.92(1 \mathrm{H}, \mathrm{m})$, $1.83(3 \mathrm{H}, \mathrm{s}), 1.74-1.71(3 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{m}), 0.45(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 187.7, 173.6, 166.1, 138.2, 136.8, 104.4, 71.5, 58.6, 58.3, 56.3, 55.7, 45.1, 29.5, 26.1, 24.4, 15.2, 7.1. IR $\left(\mathrm{CHCl}_{3}\right) 1622,1603 \mathrm{~cm}^{-1}$. CI-MS, m / z (relative intensity) $308\left(\mathrm{M}^{+}+1,40 \%\right), 142\left(\mathrm{M}^{+}-166,100 \%\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4}$: $\mathrm{C}, 66.42 ; \mathrm{H}, 8.20 ; \mathrm{N}, 4.56$. Found: C, 66.28; H, 8.32; N, 4.49.
(2'S,4R,6S)-4-Ethyl-3-methoxy-6-methyl-4-[[2'-(meth-oxymethyl)pyrrolidinyl]carbonyl]-5-cyclohexen-1-one (6). A mixture of $5(3.07 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(5 \%, 2.00 \mathrm{~g}, 0.940$ mmol) in EtOAc (225 mL) was shaken under $\mathrm{H}_{2}(60 \mathrm{psi})$ for 4 h. Filtration and column chromatography (silica gel, 70\% EtOAc in hexane) gave 6, 2.80 g (90\%), as col orless crystals (mp 82-84 ${ }^{\circ} \mathrm{C}$). $\mathrm{R}_{\mathrm{f}}=0.29$ (EtOAc:hexane 7:3) UV active. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.38(1 \mathrm{H}, \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.69(3 \mathrm{H}, \mathrm{s})$, $3.60(1 \mathrm{H}, \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{br}$ s), $3.43(1 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.02$ $(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{m}), 1.89(3 \mathrm{H}$, $\mathrm{m})$, $1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.7,178.6,169.7,102.0,72.1,58.9,58.0,55.7,51.8$, $46.7,38.5,36.4,30.4,26.2,24.9,15.1,10.7$. IR $\left(\mathrm{CHCl}_{3}\right) 1632$, $1601 \mathrm{~cm}^{-1}$. CI-MS, m/z (relative intensity) $310\left(\mathrm{M}^{+}+1,100 \%\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{4}$: $\mathrm{C}, 65.99 ; \mathrm{H}, 8.80 ; \mathrm{N}, 4.53$. Found: C, 65.72; H, 8.77; N, 4.42.
(2S,3S,4R,6S)-4-Ethyl-3-methoxy-6-methyl-4-[[2'-(meth-oxymethyl)pyrrolidinyl]carbonyl]-1-cyclohexanone (7). To a solution of $6(9.95 \mathrm{~g}, 32.2 \mathrm{mmol})$ and t-BuOH (9.6 mL , $96.6 \mathrm{mmol})$ in THF (200 mL) and $\mathrm{NH}_{3}(1500 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added Li until the blue coloration was maintained for 1520 min at $-78^{\circ} \mathrm{C}$. The enolate was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\sim 5$ g), and the mixture was warmed to room temperature while NH_{3} evaporated. Water was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography (silica gel, 50%, 70% EtOAc in hexane) provided 7, 8.83 g (88\%), as a white solid (mp 90-91 ${ }^{\circ} \mathrm{C}$). $\mathrm{R}_{\mathrm{f}}=0.30$ (EtOAc:hexane 7:3) UV inactive. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.42(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{m}), 3.61$ ($1 \mathrm{H}, \mathrm{m}$), $3.57(1 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}$, s), $3.27(3 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 3 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=15 \mathrm{~Hz}, 3 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 2.04$ ($1 \mathrm{H}, \mathrm{m}$), 1.92-1.82 ($5 \mathrm{H}, \mathrm{m}$), $1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}$), $0.95(3$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 210.4,172.1,83.0,72.1$, $58.6,58.5,56.3,52.4,47.5,40.0,39.8,35.7,26.0,25.3,24.0$, 14.2, 8.4. IR $\left(\mathrm{CHCl}_{3}\right) 1713,1606 \mathrm{~cm}^{-1}$. $\mathrm{CI}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity) $312\left(M^{+}+1,100 \%\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4}$: C, 65.56; H, 9.39; N, 4.50. Found: C, 65.71; H, 9.56; N, 4.48.
(2S,4S,5R,7S)-5-Ethyl-4-methoxy-7-methyl-5-[[2'-(meth-oxymethyl)pyrrolidinyl]carbonyl]oxacycloheptan-2one (8). $\mathrm{Na}_{2} \mathrm{HPO}_{4}(7.39 \mathrm{~g}, 52.0 \mathrm{mmol})$ and urea hydrogen peroxide (UHP, $5.44 \mathrm{~g}, 57.8 \mathrm{mmol}$) were added to a solution of 7 ($1.80 \mathrm{~g}, 5.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The mixture was cool ed to $0^{\circ} \mathrm{C}$, treated with trifluoroacetic anhydride (2.05 mL , 14.5 mmol), and then allowed to warm to room temperature with stirring. After 2.5 h , another portion of trifluoroacetic anhydride ($1.00 \mathrm{~mL}, 7.08 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 16 h and then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated NaHCO_{3}. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated at reduced pressure. Chromatography (silica gel, hexanes, 70% EtOAc/ hexanes, and EtOAc) provided $8,1.56 \mathrm{~g}$ (83\%), as a white solid (mp 182.5-185 ${ }^{\circ} \mathrm{C}$). $\mathrm{R}_{\mathrm{f}}=0.18$ (EtOAc:hexane 7:3) UV inactive. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.43(1 \mathrm{H}, \mathrm{m}), 4.33(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{m}), 3.40-3.34(2 \mathrm{H}, \mathrm{m})$, $3.34(3 \mathrm{H}, \mathrm{s}), 3.22(3 \mathrm{H}, \mathrm{s}), 3.04-2.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 8$ $\mathrm{Hz}), 2.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16 \mathrm{~Hz}, 10 \mathrm{~Hz})$, $1.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}), 1.86-1.60(5 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6 \mathrm{~Hz}), 0.77(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.4,171.1$, $71.9,70.6,58.8,58.5,56.9,56.0,53.5,47.4,36.0,33.4,25.8$, $25.2,23.6,22.8,7.8$. IR $\left(\mathrm{CHCl}_{3}\right) 1717,1606,1203 \mathrm{~cm}^{-1}$. CIMS, m/z (relative intensity) 328 ($\mathrm{M}^{+}+1,100 \%$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 62.36; H, 8.93; $\mathrm{N}, 4.28$. Found: $\mathrm{C}, 62.03$; H, 8.77; N, 4.24.
(1'S,3R,5S)-3-Ethyl-3-(1'-2'-carboxyethyl)-5-methylox-acyclopentan-1-one (9). A solution of $8(2.27 \mathrm{~g}, 6.94 \mathrm{mmol})$ and $1.0 \mathrm{~g}(5.3 \mathrm{mmol})$ of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene $(100 \mathrm{~mL})$ and water (14 mL) was heated at reflux for 7 h . Another 1 g of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was added, and the solution was heated overnight. After a third addition of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g})$, the mixture was refluxed for 7 h . The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography of the residue (silica gel, 60% EtOAc in hexane) gave 9, $1.24 \mathrm{~g}(78 \%)$, as a colorless oil. $\mathrm{R}_{\mathrm{f}}=$ streak from baseline (EtOAc:hexane 7:3) UV inactive. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.0$ (1 $\mathrm{H}, \mathrm{br} \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{m}), 3.40(3 \mathrm{H}, \mathrm{s}), 2.58(1 \mathrm{H}$, dd, J $=16 \mathrm{~Hz}, 4 \mathrm{~Hz}), 2.49-2.43(2 \mathrm{H}, \mathrm{m}), 1.65-1.60(2 \mathrm{H}, \mathrm{m})$, $1.38(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.32(1 \mathrm{H}, \mathrm{m}), 0.93(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 180.0,176.5,81.9,74.8,59.3,54.6,36.1,34.1$, $26.5,21.5,8.3$. IR $\left(\mathrm{CDCl}_{3}\right) 3400-2500,1765,1713 \mathrm{~cm}^{-1}$. CIMS, m/z (relative intensity) 231 ($\mathrm{M}^{+}+1,100 \%$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 57.38; H, 7.88. Found: C, $57.49 ; \mathrm{H}, 7.64$.

Amide 11a. A solution of $9(3.09 \mathrm{~g}, 13.4 \mathrm{mmol})$ in DMF $(75 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(4.67 \mathrm{~mL}, 33.5 \mathrm{mmol})$. The solution was cooled to $0^{\circ} \mathrm{C}$, and diphenylphosphoryl azide (3.47 $\mathrm{mL}, 16.1 \mathrm{mmol}$) and tryptamine ($2.58 \mathrm{~g}, 16.1 \mathrm{mmol}$) were added. The mixture was warmed to room temperature and stirred overnight. Quenching with $\mathrm{H}_{2} \mathrm{O}$ was followed by extraction with $\mathrm{Et}_{2} \mathrm{O}$ and drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo and chromatography (silica gel, 70% EtOAc/hexanes) afforded 11a as a white crystalline solid ($\mathrm{mp} 42-45^{\circ} \mathrm{C}$), 4.13 $\mathrm{g}(83 \%) . \mathrm{R}_{\mathrm{f}}=0.21$ (EtOAc:hexane 3:1) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.37(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $7.05(1 \mathrm{H}, \mathrm{s}), 5.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.46(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.63$ $(2 \mathrm{H}, \mathrm{m}), 3.29(3 \mathrm{H}, \mathrm{s}), 2.99(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}$, $3 \mathrm{~Hz}), 2.35-2.30(1 \mathrm{H}, \mathrm{m}), 2.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15 \mathrm{~Hz}, 8 \mathrm{~Hz})$, $1.61-1.51(2 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.26(1 \mathrm{H}, \mathrm{m}), 0.88$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{(}\left(\mathrm{CDCl}_{3}\right) \delta 180.1,170.4,136.4$, 127.2, 122.1, 122.0, 119.2, 118.5, 112.4, 111.4, 82.6, 74.6, 59.7, 54.6, 39.9, 38.1, 34.4, 26.7, 25.1, 21.7, 8.6. IR $\left(\mathrm{CHCl}_{3}\right) 1754$, $1662,1522 \mathrm{~cm}^{-1}$. CI-MS, m/z (relative intensity) 373 ($\mathrm{M}^{+}+$ $1,100 \%)$. HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}+1\right) 373.2127$, found 373.2122.

N-Boc-Indole 11b. To a solution of $\mathbf{1 1 a}$ ($1.10 \mathrm{~g}, 2.96 \mathrm{mmol}$) and $\left(t-\mathrm{BuO}_{2} \mathrm{C}\right)_{2} \mathrm{O}(0.77 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added DMAP ($36 \mathrm{mg}, 0.30 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min , washed with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo to give a white crystalline solid ($\mathrm{mp} 44-46^{\circ} \mathrm{C}$). Flash chromatography of the
residue (silica gel, 70% EtOAc in hexane) afforded 11b, 1.30 g (93\%). $R_{f}=0.39$ (EtOAc:hexane 7:3) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.35(1 \mathrm{H}$, s), $7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 6.48(1 \mathrm{H}$, m), $4.42(1 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8 \mathrm{~Hz}, 3 \mathrm{~Hz}), 3.51(2 \mathrm{H}$, m), $3.25(3 \mathrm{H}, \mathrm{s}), 2.84(2 \mathrm{H}, \mathrm{m}), 2.31-2.28(2 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=14 \mathrm{~Hz}, 8 \mathrm{~Hz}$), $1.57(9 \mathrm{H}, \mathrm{s}), 1.54-1.43(2 \mathrm{H}, \mathrm{m}), 1.25(3$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.25(1 \mathrm{H}, \mathrm{m}), 0.81(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 179.9,170.4,149.4,135.3,130.1,124.2,122.8$, $122.3,118.7,117.4,115.0,83.3,82.4,74.4,59.3,54.4,39.0,37.8$, 34.2, 27.9, 26.5, 24.8, 21.4, 8.3. IR $\left(\mathrm{CHCl}_{3}\right) 1747,1730,1667$, $1514 \mathrm{~cm}^{-1}$. CI-MS, m/z (relative intensity) 473 ($\mathrm{M}^{+}+1,100 \%$). HRMS (CI) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+}+1\right) 472.2573$, found 472.2569.

Diol 12. To a solution of $\mathbf{1 1 b}(5.15 \mathrm{~g}, 10.9 \mathrm{mmol})$ in THF $(130 \mathrm{~mL})$ at room temperature was added $\mathrm{LiBH}_{4}(0.712 \mathrm{~g}, 32.7$ mmol) which was followed by stirring for 12 h . Additional portions of $\mathrm{LiBH}_{4}(0.30 \mathrm{~g}, 14 \mathrm{mmol})$ were added each $8-12 \mathrm{~h}$ until the reaction was complete. Water was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo to give a white foam. Flash chromatography of the residue (silica gel, 85% EtOAc in hexane) provided 12, 4.07 g (78%), as a white crystalline solid ($\mathrm{mp} 41.5-45^{\circ} \mathrm{C}$). R_{f} $=0.24$ (EtOAc:hexane 7:3) UV active. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.10$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.91(1 \mathrm{H}$, m), $3.85(1 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{m}), 3.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}), 3.38$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}$), $3.27(3 \mathrm{H}, \mathrm{s}), 2.93(2 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=16 \mathrm{~Hz}, 4 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16 \mathrm{~Hz}, 6 \mathrm{~Hz}), 1.85(1 \mathrm{H}$, $\mathrm{m}), 1.67(9 \mathrm{H}, \mathrm{s}), 1.62(1 \mathrm{H}, \mathrm{m}), 1.37-1.25(3 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 0.79(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz})$. ${ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right) \delta$ 173.6, 149.9, 135.4, 130.4, 124.6, 123.1, 122.6, 118.9, 117.8, $115.3,83.9,81.3,67.1,63.5,58.4,44.3,43.2,39.0,37.8,28.2$, 27.8, 25.4, 25.1, 24.8, 7.6. IR $\left(\mathrm{CHCl}_{3}\right) 3500-3100,1724,1650$, $1518 \mathrm{~cm}^{-1}$. $\mathrm{CI}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity) 477 ($\mathrm{M}^{+}+1,4 \%$), 377 ($\mathrm{M}^{+}+1-100,100 \%$). HRMS (CI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6}$ $\left(M^{+}+1\right) 477.2965$, found 477.2975.

Amido Keto Aldehyde 13. A solution of oxalyl chloride ($81 \mathrm{mg}, 0.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5.8 \mathrm{~mL}\right.$) at $-78^{\circ} \mathrm{C}$ was treated with DMSO $(98 \mathrm{mg}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Themixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min , and then diol $12(60 \mathrm{mg}, 0.13$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 25 min and was then treated with $E t_{3} \mathrm{~N}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 5 min , the solution was warmed to room temperature. The reaction mixture was washed with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under reduced pressure to give a colorless oil. Flash chromatography of the residue (silica gel, 70\% EtOAc in hexane) afforded 13, 56 mg (94%), as a colorless oil. The product was used immediately in the next reaction because of decomposition. $\mathrm{R}_{\mathrm{f}}=0.39$ (EtOAc:hexane 7:3) UV active. ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.58(1 \mathrm{H}, \mathrm{s}), 8.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $\mathrm{Hz}), 7.47(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ $\mathrm{Hz}), 5.95(1 \mathrm{H}, \mathrm{br} s), 4.16(1 \mathrm{H}, \mathrm{m}), 3.64(2 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}, \mathrm{s})$, $2.95(2 \mathrm{H}, \mathrm{m}), 2.81-2.70(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=17 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=15 \mathrm{~Hz}, 4 \mathrm{~Hz}), 2.20(1 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{m}), 1.76$ $(1 \mathrm{H}, \mathrm{m}), 1.70(9 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 206.9,203.9,170.8,149.5,135.4,130.1,124.3,123.0$, 122.4, 118.7, 117.4, 115.1, 83.4, 79.8, 59.3, 55.9, 42.6, 39.0, 37.7, $30.6,28.0,24.9,22.9,8.03$. IR $\left(\mathrm{CHCl}_{3}\right) 1723,1664,1518 \mathrm{~cm}^{-1}$. $\mathrm{CI}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity) 473 ($\mathrm{M}^{+}+1,6 \%$), 455 ($\mathrm{M}^{+}+$ $\left.1-\mathrm{H}_{2} \mathrm{O}, 100 \%\right)$.

Pentacyclic Lactams 15 and 16. A solution of 13 (960 $\mathrm{mg}, 2.03 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(10 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was stirred at room temperature for 15 h , after which saturated NaHCO_{3} was added and then solid NaHCO_{3} until the aqueous solution was a neutral pH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to give a mixture of $\mathbf{1 5}$ and $\mathbf{1 6}$ (${ }^{1} \mathrm{H}$ NMR analysis). Chromatography (silica gel, 30\% EtOAc in hexane) provided 15, 319 mg (47\%), and 16, 208 mg (30\%). 15: yellow solid, $\mathrm{mp} 144.5-146.5^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.65$ (EtOAc:hexane 3:1) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$, $7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$
$=7 \mathrm{~Hz})$, $4.98(1 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}$, dd, J $=12 \mathrm{~Hz}, 5 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 3.04(2 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}$, dd, J $=17 \mathrm{~Hz}, 5 \mathrm{~Hz})$, $2.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}), 2.58(3 \mathrm{H}, \mathrm{s})$, $2.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17 \mathrm{~Hz}, 12 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{m})$, $1.03(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.40(1 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{m})$, 7.15-7.10 ($2 \mathrm{H}, \mathrm{m}$), $5.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 6 \mathrm{~Hz}), 4.60(1 \mathrm{H}$, s), $4.28(1 \mathrm{H}, \mathrm{s}), 3.07(1 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12 \mathrm{~Hz}, 5 \mathrm{~Hz})$, $2.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16 \mathrm{~Hz}, 5 \mathrm{~Hz}), 2.70(3 \mathrm{H}, \mathrm{s}), 2.47(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=12 \mathrm{~Hz}, 5 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16 \mathrm{~Hz}, 12 \mathrm{~Hz}), 2.22(1 \mathrm{H}$, dd, J $=15 \mathrm{~Hz}, 3 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.78(1 \mathrm{H}, \mathrm{m}), 1.41(1 \mathrm{H}$, $\mathrm{m}), 0.78(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (DEPT): $\delta 168.3(\mathrm{~s})$, 134.8 (s), 133.0 (s), 131.2 (s), 128.5 (s), 122.7 (d), 120.2 (d), 118.7 (d), 112.2 (d), 110.5 (d), 110.4 (s), 78.3 (d), 57.8 (q), 54.7 (d), 43.0 (t), 34.4 (t), 29.7(s), 21.1 (t), 20.7 (q), 20.3 (t), 8.7 (q). IR (KBr) 1648, $1406 \mathrm{~cm}^{-1}$. CI-MS, m/z (relative intensity) 337 $\left(\mathrm{M}^{+}+1,100 \%\right)$. HRMS (Cl) cal cd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+1\right)$ 337.1916, found 337.1912. 16: $R_{f}=0.53$ (EtOAc:hexane 3:1) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.48(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $5.30(1 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 5 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{s})$, $3.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 3.41(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}$, dd, J $=18 \mathrm{~Hz}, 7 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{m}), 2.57(3 \mathrm{H}, \mathrm{s}), 2.52(1 \mathrm{H}$, dd, $\mathrm{J}=18 \mathrm{~Hz}, 10 \mathrm{~Hz}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.02(1 \mathrm{H}, \mathrm{m}), 0.56(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 169.9,135.5,134.4,130.6$, $128.3,122.4,120.2,118.7,112.0,110.4,108.7,80.3,57.2,55.7$, 42.4, 39.3, 36.2, 20.1, 19.7, 19.6, 9.1. CI-MS, m/z (relative intensity) 337 ($\mathrm{M}^{+}+1,100 \%$).

Pentacyclic Diene Lactams 14 and 17. A solution of 15 $(275 \mathrm{mg}, 0.817 \mathrm{mmol})$ and $\mathrm{t}-\mathrm{BuOK}$ ($208 \mathrm{mg}, 1.85 \mathrm{mmol}$) in t - BuOH (25 mL) was refluxed for 2 days. Water was added to the reaction mixture, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a yellow oil. Flash chromatography (silica gel, 30\% EtOAc in hexane) afforded 14, 150 mg (60%), as a light yellow foam, 17, 29 mg (12\%), and recovered $15,27 \mathrm{mg}(10 \%)$. 14 was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ on standing, mp 157-160 ${ }^{\circ} \mathrm{C}$.

From 16. Procedure identical to that from 15: 14 mg (0.042 $\mathrm{mmol})$ of $\mathbf{1 6}, 10 \mathrm{mg}$ (0.092 mmol) of t -BuOK, and 3 mL of t -BuOH were used. The procedure afforded 14, 6.8 mg (52\%), and $\mathbf{1 7}, 2.3 \mathrm{mg}$ (18\%).

From a mixture of $\mathbf{1 5}$ and 16. Procedure identical to that from 15: $1.19 \mathrm{~g}(3.54 \mathrm{mmol})$ of a mixture of $\mathbf{1 5}$ and $\mathbf{1 6}, 0.873$ $\mathrm{g}(7.78 \mathrm{mmol})$ of t -BuOK, and 100 mL of t -BuOH were used. The procedure afforded 14, $0.599 \mathrm{~g}(55 \%), \mathbf{1 7}, 98 \mathrm{mg}(9 \%)$, and recovered 15, 78 mg (7\%). 14: $\mathrm{R}_{\mathrm{f}}=0.75$ (EtOAc:hexane 3:1) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.43(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 4.89(1 \mathrm{H}$, $\mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{s}), 3.20-3.12(2 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}$, br d, J $=15 \mathrm{~Hz}$), $2.55(3 \mathrm{H}, \mathrm{s}), 1.81(1 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{m})$, $1.06(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.34-7.29(2 \mathrm{H}, \mathrm{m}), 7.20-$ $7.08(2 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10$ $\mathrm{Hz}, 1.5 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 6 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{s}), 4.05$ ($1 \mathrm{H}, \mathrm{s}$), $3.22(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}$, dddd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 5 \mathrm{~Hz}$, $5 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15 \mathrm{~Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{s})$, $1.44-1.30(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 165.5,144.3,134.6,134.4,131.3,128.8,122.6,121.3,120.3$, $118.8,112.3,110.6,108.3,57.2,44.2,37.8,33.5,20.9,19.4,8.1$. IR $\left(\mathrm{CHCl}_{3}\right) 1665,1609 \mathrm{~cm}^{-1}$. CI-MS, m/z (relative intensity) 305 ($\mathrm{M}^{+}+1,100 \%$). HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\right.$ 1) 305.1654 , found 305.1657 . Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$: C, 78.92; H, 6.62; N, 9.21. Found: C, 78.81; H, 6.55; N, 9.13.

17: $R_{f}=0.71$ (EtOAc:hexane 3:1) UV active. ${ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.21$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10$ $\mathrm{Hz}), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $13 \mathrm{~Hz}, 8 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{s}), 3.29(1 \mathrm{H}, \mathrm{m}), 2.93(2 \mathrm{H}, \mathrm{m}), 2.54$ $(3 \mathrm{H}, \mathrm{s}), 1.46(1 \mathrm{H}, \mathrm{m}), 0.78(1 \mathrm{H}, \mathrm{m}), 0.74(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.16-$ $7.06(2 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 6.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10$ Hz), 4.73 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13 \mathrm{~Hz}, 6 \mathrm{~Hz}, 2 \mathrm{~Hz}$), $4.59(1 \mathrm{H}, \mathrm{s}), 4.24$ ($1 \mathrm{H}, \mathrm{s}$), 2.96 (1 H , dddd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 5 \mathrm{~Hz}$), 2.60 (1 $\mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}$, ddd, J $=16 \mathrm{~Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}), 1.95(3 \mathrm{H}, \mathrm{s})$, $1.36-1.29(2 \mathrm{H}, \mathrm{m}), 0.47(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. CI-MS, m/z (relative intensity) $305\left(\mathrm{M}^{+}+1,100 \%\right)$.

Deuterium Exchange Experiments. A solution of 15 (5 $\mathrm{mg}, 0.02 \mathrm{mmol}$) and t-BuOK ($4 \mathrm{mg}, 0.03 \mathrm{mmol}$) in t-BuOD (2 mL) was heated at reflux for 2 days. Water was added to the reaction mixture, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a yel low oil. Flash chromatography (silica gel, 30% EtOAc in hexane) afforded $14-14-\mathrm{d}(1 \mathrm{mg})$ and $15-14-\mathrm{d}_{2}(4 \mathrm{mg})$. 14-14-d: $\mathrm{R}_{\mathrm{f}}=$ 0.57 (EtOAc:hexane $=7: 3$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.34-7.29$ (2 $\mathrm{H}, \mathrm{m}), 7.20-7.08(2 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{s}), 4.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13$ $\mathrm{Hz}, 6 \mathrm{~Hz}$), $4.32(0.7 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{m}), 2.60(1$ H , dddd, $\mathrm{J}=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 5 \mathrm{~Hz})$, $2.18(1 \mathrm{H}$, ddd, $\mathrm{J}=15$ $\mathrm{Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}$), $1.96(3 \mathrm{H}, \mathrm{s}), 1.44-1.30(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$). 15-14-d2: $\mathrm{R}_{\mathrm{f}}=0.44$ (EtOAc:hexane $=7: 3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $\mathrm{Hz}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 4.98(1 \mathrm{H}$, m), $4.82(1 \mathrm{H}, \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{s}), 3.25(3 \mathrm{H}, \mathrm{s}), 3.04$ $(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}), 2.58(3 \mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{m})$, $1.70(1 \mathrm{H}, \mathrm{m}), 1.03(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$.

A mixture of $14-14-\mathrm{d}$ and $15-14-\mathrm{d}_{2}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ and t-BuOK ($4 \mathrm{mg}, 0.03 \mathrm{mmol}$) in t-BuOD (2 mL) was heated at reflux for 3 days. Water was added to the reaction mixture, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a yellow oil. Flash chromatography (silica gel, hexane followed by 30% EtOAc in hexane) afforded 14 $14-\mathrm{d}(0.9 \mathrm{mg})$ as a light yellow oil and $15-14-\mathrm{d}_{2}(0.4 \mathrm{mg})$.
A solution of $\mathbf{1 6}(6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and t-BuOK ($5 \mathrm{mg}, 0.05$ mmol) in t-BuOD (2 mL) was heated at reflux for 3 days. Water was added to the reaction mixture, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuoto give a yellow oil. Flash chromatography (silica gel, hexane followed by 30% EtOAc in hexane) afforded $14-21-d, 14-d(0.7 \mathrm{mg})$, a mixture of $14-21-d, 14-d, 17-21-d, 14-d$ (2.9 mg), and a third fraction containing 16-14-d $\mathrm{d}_{2}\left(0.8 \mathrm{mg}\right.$). 14-21-d,14-d: $\mathrm{R}_{\mathrm{f}}=0.57$ (EtOAc: hexane $=7: 3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.34-7.29(2 \mathrm{H}, \mathrm{m}), 7.20-$ $7.08(2 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{s}), 4.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}, 6 \mathrm{~Hz})$, $4.32(0.1 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{m})$, $2.60(1 \mathrm{H}$, dddd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 5 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15 \mathrm{~Hz}, 5 \mathrm{~Hz}$, $2 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{s}), 1.44-1.30(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ Hz).

17-21-d,14-d: $R_{f}=0.44$ (EtOAc:hexane $=7: 3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.16-$ $7.06(2 \mathrm{H}, \mathrm{m}), 6.20(1 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13 \mathrm{~Hz}, 6 \mathrm{~Hz}$, 2 Hz), $4.59(1 \mathrm{H}, \mathrm{s}), 2.96(1 \mathrm{H}$, dddd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 5 \mathrm{~Hz}, 5$ Hz), $2.60(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}$, ddd, J $=16 \mathrm{~Hz}, 5 \mathrm{~Hz}, 2 \mathrm{~Hz}), 1.95$ $(3 \mathrm{H}, \mathrm{s}), 1.36-1.29(2 \mathrm{H}, \mathrm{m}), 0.47(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .16-14-\mathrm{d}_{2}$: $\mathrm{R}_{\mathrm{f}}=0.26$ (EtOAc:hexane $=7: 3$). ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 7.64$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13 \mathrm{~Hz}$, $5 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{s}), 3.41(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{m})$, $2.57(3 \mathrm{H}, \mathrm{s}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.02(1 \mathrm{H}, \mathrm{m}), 0.56(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ Hz).

Pentacyclic Amine 18. To a solution of $\mathbf{1 4}(20 \mathrm{mg}, 0.066$ mmol) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol})$. The mixture was stirred and refluxed for 1 h . The reaction was quenched with water, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a colorless oil. Flash chromatography (silica gel, EtOAc and $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 18, 14 mg (73\%), as a colorless oil, which sol idified after a few days. $\mathrm{R}_{\mathrm{f}}=0.17$ (EtOAc:hexane 7:3) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$, 7.15-7.08 (2 H, m), $4.76(1 \mathrm{H}, \mathrm{s}), 4.15(1 \mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz}$), $3.25(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12 \mathrm{~Hz}, 5 \mathrm{~Hz}), 3.03(1 \mathrm{H}$, $\mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12 \mathrm{~Hz}, 3 \mathrm{~Hz}), 2.65(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz})$, $2.51(1 \mathrm{H}, \mathrm{m}), 2.49(3 \mathrm{H}, \mathrm{s}), 1.89(1 \mathrm{H}, \mathrm{m}), 1.71(2 \mathrm{H}, \mathrm{m}), 1.40$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=13 \mathrm{~Hz}), 1.13(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14 \mathrm{~Hz}, 4 \mathrm{~Hz}), 0.98(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 134.4,131.9,129.0,121.6$, $119.5,118.3,115.2,112.0,107.2,62.7,56.3,51.7,45.2,36.4$, 30.1, 27.5, 20.7, 20.6, 16.3, 8.7. IR $\left(\mathrm{CHCl}_{3}\right) 1450 \mathrm{~cm}^{-1}$. CIMS, m/z (relative intensity) 293 ($\mathrm{M}^{+}+1,100 \%$). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2}\left(\mathrm{M}^{+}+1\right)$: 293.2018, found 293.2013.

Dibromide 19. Amine $\mathbf{1 8}$ ($83 \mathrm{mg}, 0.28 \mathrm{mmol}$) was dissolved in THF (20 mL) and treated with N -bromoacetamide (82 mg ,
0.60 mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to slowly warm to room temperature. After 45 min , saturated NaHCO_{3} was added, and the mixture was extracted with CH_{2-} Cl_{2}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford a yellowish white foam. Chromatography (silica, 70\% EtOAd hexane) afforded 19 as a yellow oil, 114 mg (91\%). $\mathrm{R}_{\mathrm{f}}=0.33$ (EtOAc:hexane 7:3) UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}$), $7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{s}), 5.47(1 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}$, br s), $3.35(2 \mathrm{H}, \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{m}), 2.67-2.58(2 \mathrm{H}, \mathrm{m}), 2.51$ (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J}=12 \mathrm{~Hz}, 3 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{m})$, $1.85-1.77(2 \mathrm{H}, \mathrm{m})$, $1.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 1.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 0.99(2 \mathrm{H}$, $\mathrm{m}), 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.1,134.5$, $130.8,130.3,122.7,121.6,118.9,113.3,108.5,90.4,58.0,54.2$, $50.8,44.7,40.5,24.8,22.7,21.4,16.7,6.4$. $\mathrm{CI}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity) 453 ($\mathrm{M}^{+}+3,50 \%$), 451 ($\mathrm{M}^{+}+1,100 \%$), 449 ($\mathrm{M}^{+}-$ 1, 50%). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{2}\left(\mathrm{M}^{+}-2\right)$: 448.01497, found 448.01480 .
(+)-Apovincaminal (20a). To a solution of 19 (115 mg , $0.254 \mathrm{mmol})$ in DMSO (15 mL) were added $\mathrm{AgBF}_{4}(250 \mathrm{mg}$, 1.2 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.20 \mathrm{~mL}, 1.4 \mathrm{mmol}$) under strictly anhydrous conditions. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 9 h . After cooling to room temperature, the mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, and the aqueous layer was neutralized with saturated NaHCO_{3} and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2^{-}}\right.$ SO_{4}), and concentrated under reduced pressure to provide a brown foam. Column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$ EtOAc in hexane, and $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 20a, 65 mg , $83 \% . \mathrm{R}_{\mathrm{f}}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right) . \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max } 310$, 280, 221, $210 \mathrm{~nm} .{ }^{7 \mathrm{c} 1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.53(1 \mathrm{H}, \mathrm{s}), 7.61(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $7.14(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, \mathrm{s}), 3.37(1 \mathrm{H}$, dd, J $=14 \mathrm{~Hz}, 6 \mathrm{~Hz}$), $3.28(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12 \mathrm{~Hz}, 7 \mathrm{~Hz}$), 3.03 (1 $\mathrm{H}, \mathrm{m}), 2.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 2.54(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=13 \mathrm{~Hz}), 2.03$ $(1 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{m}), 1.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$, $1.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}), 1.07(1 \mathrm{H}, \mathrm{m}), 1.05(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 186.1,140.5,137.6,134.4,129.1,122.5$, $120.6,118.1,114.3,109.5,55.5,51.4,44.8,38.5,28.5,27.0,20.2$, 16.3, 8.8. IR $\left(\mathrm{CHCl}_{3}\right) 1697,1600 \mathrm{~cm}^{-1}$. CI-MS, m / z (relative intensity) 307 ($\mathrm{M}^{+}+1,100 \%$). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ $\left(M^{+}+1\right)$: 307.1810, found 307.1810.
(+)-Apovincaminal Dimethyl Acetal (20b). 20a (120 $\mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved in anhydrous methanol (70 mL) and treated with $(\mathrm{MeO})_{3} \mathrm{CH}(4.3 \mathrm{~mL}, 39 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($0.35 \mathrm{~g}, 2.0 \mathrm{mmol}$). The solution was heated at reflux for 0.5 h and then cooled to room temperature. Saturated NaHCO_{3} was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to provide a light brown oil. Column chromatography (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 20b, $90 \mathrm{mg}(66 \%) . \mathrm{R}_{\mathrm{f}}=0.23$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ UV active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.74$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$, $7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{s}), 5.44(1 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}$, s), $3.48(3 \mathrm{H}, \mathrm{s}), 3.36(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz}), 3.33(3 \mathrm{H}, \mathrm{s})$, $3.26(1 \mathrm{H}, \mathrm{dt}$, J = $13 \mathrm{~Hz}, 5 \mathrm{~Hz}$), $3.03(1 \mathrm{H}, \mathrm{m}), 2.71(2 \mathrm{H}, \mathrm{m})$, $2.52(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=4 \mathrm{~Hz}), 1.97(1 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{m}), 1.76(1$ $\mathrm{H}, \mathrm{m}), 1.49(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=14 \mathrm{~Hz}), 1.42(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=11 \mathrm{~Hz})$, $1.14(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14 \mathrm{~Hz}, 3 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 133.9,131.5,129.0,121.9,119.8,118.0,117.9$, 113.6, 108.0, 99.8, 56.1, 53.6, 52.2, 51.6, 45.1, 36.6, 29.8, 27.5, 20.5, 16.4, 8.9. IR $\left(\mathrm{CHCl}_{3}\right) 1455 \mathrm{~cm}^{-1}$. $\mathrm{CI}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity) 352 ($\mathrm{M}^{+}, 75 \%$), $321\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}, 100 \%\right)$. HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\left(\mathrm{M}^{+}\right)$: 352.2151, found 352.2156.
(+)-Apovincaminol (20c). 20a ($12 \mathrm{mg}, 0.039 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and added to a cooled ($0^{\circ} \mathrm{C}$) solution of $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$. After 30 min , saturated sodium bicarbonate (1 mL) was added at $0^{\circ} \mathrm{C}$. The methanol was removed in vacuo, and the concentrated reaction material was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined
organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to provide a yellow-white foam. Purification by column chromatography (silica, $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 20c, 9 mg (75\%).
$\mathrm{R}_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10\right)$. UV active. ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{s}), 4.88(1 \mathrm{H}, \mathrm{d}$, $J=13 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{bs}), 3.40(1 \mathrm{H}$, dd, J $=14 \mathrm{~Hz}, 6 \mathrm{~Hz}$), $3.29(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12 \mathrm{~Hz}, 7 \mathrm{~Hz}), 3.00(1$ $\mathrm{H}, \mathrm{m}), 2.78(2 \mathrm{H}, \mathrm{bs}), 2.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz}), 1.97(1$ $\mathrm{H}, \mathrm{m}), 1.84(2 \mathrm{H}, \mathrm{m}), 1.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}), 1.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=14 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz})$. See text for additional characterization at Hannover.

Mosher Ester of (+)-Apovincaminol. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of (S)-(-)- α-methoxy- α-(trifluoromethyl)phenylacetic acid ($21 \mathrm{mg}, 0.088 \mathrm{mmol}$) wwew added DMAP ($2 \mathrm{mg}, 0.015$ mmol), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride ($20 \mathrm{mg}, 0.102 \mathrm{mmol}$), and $\mathbf{2 0 c}(9 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was stirred for 15 h and then concentrated under reduced pressure to afford a yellow film. Purification by column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided 15 mg (quantitative yield) of the Mosher ester. $\mathrm{R}_{\mathrm{f}}=0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$ 95:5). UV active. ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$, $7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.37-7.27(4 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}), 5.27(1$ $\mathrm{H}, \mathrm{s}), 5.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{s}), 3.44(3 \mathrm{H}, \mathrm{s}), 3.37$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14 \mathrm{~Hz}, 6 \mathrm{~Hz}$), $3.27(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13 \mathrm{~Hz}, 5 \mathrm{~Hz}$), $3.01(1 \mathrm{H}, \mathrm{m}), 2.68(2 \mathrm{H}, \mathrm{bs}), 2.53(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=17 \mathrm{~Hz}), 1.94(1$ $\mathrm{H}, \mathrm{m}), 1.75(2 \mathrm{H}, \mathrm{m}), 1.42(2 \mathrm{H}, \mathrm{bs}), 1.08(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14 \mathrm{~Hz}$, $4 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 166.2,133.5$, 131.9, 129.8, 129.6, 128.9, 128.3, 127.1, 124.3, 122.6, 122.3, 122.0, 120.1, 118.4, 111.5, 108.3, 64.6, 55.8, 55.5, 51.6, 46.5, 45.0, 37.0, 29.4, 27.2, 20.4, 16.3, 8.7. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.12$ (major diastereomer), 4.23 (minor). The ratio of integrated areas of the ${ }^{19} \mathrm{~F}$ signals was 22:1. A mixture of the diastereomers al so was prepared (see text). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 4.11, 4.21 (ratio of integrated areas $=1: 1$).
(+)-Apovincamine (1a). To a solution of $\mathbf{2 0 b}(25 \mathrm{mg}, 0.071$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ were added AIBN ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) and NBS ($15 \mathrm{mg}, 0.085 \mathrm{mmol}$). The mixture was immediately immersed in an oil bath at $95^{\circ} \mathrm{C}$ and heated for 0.5 h . After cooling to room temperature, the reaction was concentrated under reduced pressure. Column chromatography (silica, EtOAc, $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave (+)-apovincamine (la), 11 mg (47\%). $\mathrm{R}_{\mathrm{f}}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) \mathrm{UV}$ active. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.24-7.14(3 \mathrm{H}, \mathrm{m}), 6.15(1$ $\mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{bs}), 3.96(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=13 \mathrm{~Hz}, 5 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=11 \mathrm{~Hz})$, $2.72(1 \mathrm{H}, \mathrm{m}), 2.03(2 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14$ $\mathrm{Hz}), 1.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}), 1.07(1 \mathrm{H}, \mathrm{m}), 1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.5,134.3,128.5,128.3,127.4$, 122.6, 120.7, 118.4, 112.6, 108.4, 56.1, 52.7, 51.5, 44.8, 37.9, $27.8,27.2,19.4,16.1,8.6$. IR $\left(\mathrm{CHCl}_{3}\right) 1731,1636,1610,1456$, $1266 \mathrm{~cm}^{-1}$. See text for additional discussion of product characterization.

Acknowledgment. This work was supported by the National Institutes of Health (GM 26568). We thank Dr. Fook S. Tham for the X-ray structure determination of 8, Degussa AG for a generous gift of L-proline, and Professor E. Winterfeldt for comparison of 20c to his previously prepared apovincaminol.

Supporting Information Available: Copies of proton and carbon NMR spectra (20 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O961603P

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, February 1, 1997.
 (1) Lounasmaa, M.; Toluanen, A. In The Alkal oids; Cordell, G. A., Ed.; Academic Press: New York, 1992; Vol. 42, pp 1-116.
 (2) Neuss, N. In Indole and Biogenetically Related Alkaloids; Phillipson, J. D., Zenk, M. H., Eds.; Academic Press: London, 1980; p 294.
 (3) King, G. A.; Narcavage, D. Drug Dev. Res. 1986, 9, 225.
 (4) Hagstadius, S. Psychopharmacology (Berlin) 1984, 83, 321.
 (5) Gmeiner, P.; Feldman, P. L.; Chu-Moyer, M. Y.; Rapoport, H. J . Org. Chem. 1990, 55, 3068.
 (6) Takano, S.; Y onaga, M.; M orimoto, M.; Ogasawara, K. J . Chem. Soc., Perkin Trans. 1 1985, 305.

[^1]: (7) (a) Meyers, A. I.; Romine, J .; Robichaud, A. J. Heterocycles 1990, 30, 339. (b) Ihara, M.; Yasui, K.; Taniguchi, N.; Fukumoto, K. Heterocycles 1990, 31, 1017. (c) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035. (d) Node, M.; Nagasawa, H.; Fuji, K. J . Org. Chem. 1990, 55, 517.
 (8) For a complete review of previous syntheses of the eburnaminevincamine alkaloids, see: ref 1.
 (9) (a) Schultz, A. G.; Hoglen, D. K.; Holoboski, M. A. Tetrahedron Lett. 1992, 33, 6611. (b) The first synthesis of racemic eburnamine involved the "abnormal Reimer-Tiemann reaction" of p-ethylphenol to give 4-(dichloromethyl)-4-ethyl-2,5-cyclohexadien-1-one in 4\% yield; see: Bartlett, M. F.; Taylor, W. I. J . Am. Chem. Soc. 1960, 82, 5941.
 (10) F or the preparation and Birch reduction-methylation of benzamide 3, see: Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828.
 (11) Schultz, A. G.; Taveras, A. G.; Harrington, R. E. Tetrahedron Lett. 1988, 29, 3907.
 (12) See ref 10 for details.
 (13) Herndon, J. W.; Matasi, J. J . Tetrahedron Lett. 1992, 33, 5725 and references cited therein.

[^2]: (14) The authors have deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K.

